
The Role of Energy Efficiency in Productivity: Evidence

from Canada∗

by Anil Gogebakan†

July 4, 2025

Abstract

This paper quantifies productivity loss in Canada from inefficient use of capital,

labor, and energy across provinces and sectors. Using annual provincial input-output data for

all sectors (2014–2020) and a standard misallocation framework, I decompose the loss into: (i)

within sectors; and (ii) within provinces—reflecting interprovincial and sectoral misallocation,

respectively. I also quantify each input’s contribution to the gap. Unlike most studies focused

on firm-level variation within a single sector, typically manufacturing, I examine the full

economy using a novel province-sector framework. Results show the Canadian economy

operates 32% and 15% below potential when the interprovincial substitutability parameter is

set to 3 and 7, respectively. Optimal sectoral allocation within provinces narrows this loss to

30% and 14%, suggesting interprovincial differences as the main source. Energy, though just

8% of input costs, causes 1–2.5% of the loss. Capital contributes about 1%, while labor is

nearly optimally used.
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1 Introduction

What is the productivity loss in Canada due to energy misallocation? While the

inefficient use of resources has long been recognized as a major source of substantial economic

output loss and low productivity (Hsieh and Klenow (2009), Restuccia and Rogerson (2017),

Brandt et al. (2013), Bartelsman et al. (2013) Chen and Irarrazabal (2015)), most existing

studies focus on capital and labor misallocation across firms within the manufacturing sector

(Bartelsman et al. (2013), Chen and Irarrazabal (2015)). In contrast, energy—a key input in

nearly all economic activities—has received relatively little attention (Asker et al. (2019),

Choi (2020), Tombe and Winter (2015)), despite its growing relevance in both productivity

and environmental policy debates.

Energy differs from capital and labor in ways that make its misallocation particularly

relevant in the context of aggregate productivity analysis. First, energy is far less mobile

than capital or labor, as its availability and cost vary significantly across provinces due to

differences in natural endowments and infrastructure—challenges that are further amplified

by interprovincial trade barriers. Second, energy markets are heavily shaped by regulation,

ownership, and policy—resulting in persistent price gaps across provinces that do not

adjust through market mechanisms, unlike wages or returns to capital. Third, although

energy represents only about 8% of input costs, its misallocation contributes up to 2–3% of

aggregate output loss—making it more distortionary per dollar than either labor or capital.

Furthermore, improving the efficiency of energy use is not only economically beneficial but also

environmentally strategic. Achieving higher output with the same energy input can reduce

the economic cost of environmental regulations, making it easier to meet climate targets

without sacrificing growth. These features make energy a critical, yet mostly disregarded,

factor in understanding allocative inefficiency.

This paper quantifies the productivity loss in Canada from the misallocation of

energy in addition to capital and labor at the sector level across provinces. Using detailed

annual provincial input-output data from Statistics Canada for the period 2014–2020, I

extend the standard Hsieh and Klenow (2009) framework to incorporate energy as a third

input alongside capital and labor. I measure the marginal revenue products of each input

at the sector-province level and compare them to an efficient benchmark, allowing me to

compute both the magnitude and sources of allocative inefficiency.

Canada is an especially relevant case for this analysis. Its provinces operate with

substantial autonomy over energy policy, resulting in significant variation in prices, regulatory

regimes, and energy mix. These differences, combined with fragmented infrastructure and

limited interprovincial trade, make the Canadian economy particularly vulnerable to spatial
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misallocation of energy. Quantifying these inefficiencies is essential for designing better

policies that promote both economic productivity and energy efficiency.

This paper quantifies productivity loss in Canada by examining the misallocation

of energy—a vital input to production—across sectors and provinces.

Canada presents an especially relevant case. Its provincial economies function

with significant autonomy, with wide variation in energy endowments, regulatory regimes,

ownership structures, and energy prices. Hydropower dominates in some regions (e.g.,

Quebec, British Columbia), while others rely on fossil fuels (e.g., Alberta). These disparities,

coupled with limited interprovincial energy trade, create a setting ripe for spatial misallocation.

Understanding how these disparities affect productivity is essential for designing more efficient

provincial and energy policies that enhance economic output.

I develop a flexible and tractable model of sectoral production that includes energy,

capital, and labor as distinct inputs, extending the well-known misallocation framework of

(Hsieh and Klenow, 2009). Using detailed provincial input-output data from Statistics Canada,

I measure the marginal revenue products of energy (MRPE), labor (MRPL), and capital

(MRPK) at the sector-province level and compare them to an efficient benchmark, where the

weighted average of marginal revenue products serves as the reference point. This allows me

to quantify the wedges between actual and optimal allocations and estimate potential gains

from reallocation.

The results reveal substantial inefficiencies. Eliminating the misallocation of energy,

capital, and labor across provinces and sectors could increase aggregate output by 32% under

a conservative elasticity of substitution ( = 3, representing the lower bound of available

estimates). Even under a more elastic assumption ( = 7, representing the higher bound), the

potential output gain from optimal reallocation remains significant at 15%. I further decom-

pose these potential gains into interprovincial and intersectoral components. Interprovincial

misallocation—driven by regulatory fragmentation and limited energy trade—accounts for

approximately 30 percentage points of the total 32% loss. Within-province (i.e., intersectoral)

misallocation is more modest: labor appears nearly optimally allocated, capital misallocation

explains 1–2% of the loss, and energy misallocation accounts for 2–3%, despite energy com-

prising just 8% of input costs. This underscores the disproportionate role of energy and the

importance of interprovincial factors—such as trade barriers and regulatory differences—in

driving inefficiency. It also highlights the need to incorporate energy policy more centrally in

productivity-enhancing reforms.

This paper makes three main contributions. First, it provides the first comprehensive

estimate of energy misallocation in Canada using sector-by-province data, offering insights

that go beyond the manufacturing sector and firm-level analyses common in the literature.
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Second, it quantifies the welfare cost of energy distortions across geographic and sectoral

dimensions, emphasizing the role of spatial frictions in depressing productivity. Third, it

offers a tractable and generalizable framework for evaluating allocative efficiency in energy

use, which can inform policy debates around energy pricing, interprovincial infrastructure,

and climate policy.

The remainder of the paper is organized as follows: Section 2 describes the data

and measurement approach. Section 3 presents the theoretical framework. Section 4 outlines

the main findings. Section 5 concludes.

2 Data

This study examines the data from the Provincial Symmetric Input-Output Tables

(Catalogue no. 15-211-X) published by Statistics Canada’s Industry Accounts Division. These

tables provide a comprehensive, annually consistent depiction of inter-industry transactions

at the provincial level in Canada. Specifically, I utilize the detailed aggregation level for the

years from 2014 to 2020 inclusive, which offers a high-resolution view of economic flows across

provinces and sectors.

The symmetric input-output tables reformat the standard supply and use tables

into an industry-by-industry framework, allowing for clearer identification of the production

structure and intermediate demand relationships. The data captures all inter-sectoral

purchases—including expenditures on imports, inventory withdrawals, and primary in-

puts—making them well-suited for structural and efficiency analyses. The final demand

tables similarly record all purchases by final demand categories from provincial and imported

sources.

The data used reflect Statistics Canada’s most detailed industry classifications

and are harmonized across years, enabling consistent cross-provincial and intertemporal

comparisons. The version of the tables used in this study corresponds to the level of

aggregation that was previously known as “Aggregation Level S,” which was renamed

“Detailed” in 2019.

For methodological transparency and further technical detail, the construction of

these tables is documented by Statistics Canada and available through direct inquiry with

the Industry Accounts Division.
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3 Model

3.1 Aggregate Output and Sectoral Shares

I consider a standard model of monopolistic competition with heterogeneous

provinces, indexed by i. I closely follow the framework of (Hsieh and Klenow, 2009) with a

natural extension of energy as an input in the production function. In the economy, a single

aggregate output Y is produced by aggregating all sector contributions at the national level:

Y =
S∏

s=1

Y θs
s , where

S∑
s=1

θs = 1. (3.1)

θs is the share of each sector within the national economic output. Each sector’s output Ys is

given by:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

. (3.2)

This is the standard constant elasticity of substitution (CES) function over provinces with

elasticity of substitution parameter σ.

The sectoral profit maximization problem yields the aggregate price index P given

by:

P =
S∏

s=1

(
Ps

θs

)θs

(3.3)

Intuitively sectoral prices are scaled to their shares in the national economy and then

aggregated based on the same shares.

Also, province- and sector-level profit maximization gives us the revenue equation

for each province-by-sector level of revenue.

PsiYsi = PsY
1
σ
s Y

σ−1
σ

si = P 1−σ
si P σ

s Ys. (3.4)

Where the second part of the equality follows from simple algebra, where we take

the power of σ on both sides of the first equality.

The sectoral expenditure minimization problem gives us the sectoral price index

given by:

Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(3.5)
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Now, I turn to the terms of the production function and productivity. I start with

a usual profit maximization for sector s in province i. Define the production function as

the Cobb-Douglas form with three inputs to production, namely capital (K), labor (L), and

energy (E).

Ysi = AsiK
αs
si L

βs

siE
γs
si , where αs + βs + γs = 1. (3.6)

Asi represents total physical factor productivity (TFPQ). Each sector s in province

i solves the following problem:

max
Ksi,Lsi,Esi

PsiYsi − (1 + τKsi
)rKsi − (1 + τLsi

)wLsi − (1 + τEsi
)pEEsi. (3.7)

Each input is subject to input distortions τKsi
, τLsi

, τEsi
, so that sectors in each province face

distorted input prices.

By plugging Ysi and PsiYsi expressions above, we can solve this standard problem

to get the marginal revenue product for each input.

MRPKsi = αs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Ksi

= αs
(σ − 1)

σ

PsiYsi

Ksi

= (1 + τKsi
)r, (3.8)

MRPLsi = βs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Lsi

= βs
(σ − 1)

σ

PsiYsi

Lsi

= (1 + τLsi
)w, (3.9)

MRPEsi = γs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Esi

= γs
(σ − 1)

σ

PsiYsi

Esi

= (1 + τEsi
)pE. (3.10)

Where MRPKsi,MRPLsi,MRPEsi are the Marginal Revenue Product of capital,

labor, and energy, respectively.

Define the following,

TFPQsi = Asi =
Ysi

Kαs
si L

βs

siE
γs
si

(3.11)

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

βs

siE
γs
si

(3.12)

where TFPQ is total physical factor productivity, which naturally can be different for each

sector and wouldn’t mean any distortion. On the other hand TFPR indicates total factor

revenue productivity, and it should be equalized across provinces and sectors if it were not

for distortions. Any dispersion in TFPR would translate into lower output and would mean
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misallocation of resources.

It is straightforward to see that the geometric average of marginal revenue products

would be proportional to TFPR, and also it is proportional to the geometric average of

distortion (τ) terms.

Hence,

TFPRsi ∝ (MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs ∝ (1+τKsi

)αs(1+τLsi
)βs(1+τEsi

)γs (3.13)

Defining sectoral weighted average marginal revenue product for inputs as follows

MRPKs =

∑
i KsiMRPKsi∑

i Ksi

(3.14)

gives us

MRPKs

MRPKsi

=
1

(1 + τKsi
)
∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(3.15)

MRPLs

MRPLsi

=
1

(1 + τLsi
)
∑

i
1

(1+τLsi
)
PsiYsi

PsYs

(3.16)

MRPEs

MRPEsi

=
1

(1 + τEsi
)
∑

i
1

(1+τEsi
)
PsiYsi

PsYs

(3.17)

Intuitively, these are the deviations from the optimal allocation of resources across sectors

and provinces.

With a bit more algebra, we arrive at the expression below.

As =

∑
i

(
Asi

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

. (3.18)

Which is the total factor productivity at the sector level. To arrive at the output, we need to

multiply each sector’s productivity by based on their sector share θs to get the aggregate

productivity level.
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3.2 Aggregate output

Now we have all the ingredients to calculate aggregate output in the economy. If

there were no distortions (τK = τL = τE = 0), TFPs would reach to its efficient level TFP ∗
s

- When distortions exist, provinces with higher distortions contribute less to output, reducing

aggregate TFP.

A∗
s = TFP ∗

s =

(∑
i

Aσ−1
si

) 1
σ−1

(3.19)

TFPs

TFP ∗
s

=

∑
i

(
Asi

A∗
s

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

. (3.20)

Finally, it is straightforward to compare the efficient level of aggregate output with

the actual level of output.

Y

Y ∗ =
∏
s

(
TFPs

TFP ∗
s

)θs

(3.21)

3.3 Productivity Decomposition

To understand which input distortion or which dimension (i.e., province or sector)

contributes to welfare loss, we want to break down the equation. Let x̂ = x/x∗ be the

comparison term between two levels of a variable. Here we are comparing the actual

productivity level to the optimal level of productivity (i.e. no distortions). We start writing

down the national level productivity TFP/TFP ∗ or A/A∗.

A

A∗ =
∏
s

(
As

A∗
s

)θs

︸ ︷︷ ︸
Within-sector misallocation

×
∏
s

((
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

︸ ︷︷ ︸
Between-sector misallocation

(3.22)

Within component can be explicitly expressed as:
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(
A

A∗

)
within

=
∏
s


[∑

i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(3.23)

Where Rsi = PsiYsi/PsYs. Between component can be expressed as

(
A

A∗

)
between

=
∏
s



(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αs

︸ ︷︷ ︸
Capital Misallocation

×


(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs

︸ ︷︷ ︸
Labor Misallocation

×


(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γs

︸ ︷︷ ︸
Energy Misallocation


θs

(3.24)

where 1 + τKs =

(∑
i

Rsi

1 + τKsi

)−1

denotes the harmonic mean of 1+ τKsi
weighted

by Rsi. I present the full derivation of these expressions in the appendix section. Now, we are

ready to calculate the productivity loss from misallocation of various inputs, as well as the

within-sector and between-provinces. This breakdown allows us to identify how much of the

overall productivity gap is due to misallocation of each specific input, as well as inefficiencies

within sectors across provinces.

4 Results

I decompose aggregate total factor productivity (TFP) losses at the province-sector

level into two components: within-sector across provinces (denoted Âwithin) and between-

sector within provinces (Âbetween), along with input-specific productivity loss measures from

misallocation of capital, labor, and energy. Table 1 reports these results for the years

2014–2020, under two benchmark elasticities of substitution across sectors, σ = 3 and σ = 7.

Under the conservative assumption of σ = 3, the aggregate productivity index (Â)

ranges between 0.674 and 0.684, indicating an economy-wide TFP loss of approximately

32–33% relative to the efficient allocation benchmark. The within-sector component (Âwithin)

remains relatively stable around 0.69–0.70 (i.e., TFP loss around 30-31%), implying persistent

interprovincial misallocation within the same sectors. These losses likely reflect frictions in

factor mobility between provinces, such as regulatory inconsistency, limited trade integration,
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Table 1: TFP Decomposition and Input Misallocation (2014–2020)

2014 2015 2016 2017 2018 2019 2020

σ = 3

Â 0.674 0.675 0.684 0.681 0.680 0.682 0.679

Âbetween 0.958 0.976 0.987 0.984 0.984 0.980 0.983

Âwithin 0.702 0.690 0.693 0.692 0.691 0.695 0.691

Âcapital 0.996 0.988 0.987 0.989 0.990 0.988 0.988

Âlabor 0.986 1.00 1.00 1.00 1.00 1.00 1.00

Âenergy 0.975 0.988 0.991 0.988 0.989 0.983 0.991

σ = 7

Â 0.841 0.845 0.854 0.852 0.845 0.853 0.851

Âbetween 0.958 0.976 0.987 0.984 0.984 0.980 0.983

Âwithin 0.877 0.865 0.865 0.866 0.858 0.871 0.866

Âcapital 0.996 0.988 0.987 0.989 0.990 0.988 0.988

Âlabor 0.986 1.00 1.00 1.00 1.00 1.00 1.00

Âenergy 0.975 0.988 0.991 0.988 0.989 0.983 0.991

or barriers to interprovincial trade infrastructure.

By contrast, the between-sector component (Âbetween) remains closer to the efficiency

frontier, ranging from 0.958 to 0.987. While this suggests a relatively efficient allocation of

resources across sectors within provinces, deeper examination reveals that inefficiencies are

still meaningful and largely driven by distortions in capital and energy input use. These

between-sector inefficiencies translate to roughly 2–4% annual productivity loss, highlighting

significant inefficiencies for input allocation between sectors within each province. However,

it is worth noting that over time allocation has improved and the productivity loss due to

input misallocation between sectors has become closer to 2% suggesting an improvement in

this end.

Taking a closer look at the between-term, we can comment on Input-specific misal-

location patterns. Capital allocation is accounting for 1-2% of the productivity loss, with

Âcapital ranging from 0.987 to 0.996, contributing significantly to between-sector misalloca-

tion. Labor, meanwhile, is allocated with near perfection, with Âlabor reaching 1.00 in most

years. Notably, energy emerges as a key source of aggregate productivity loss. Despite its rel-

atively small share in total input use (roughly 8%), the energy-specific efficiency term, Âenergy,

ranges from 0.975 to 0.991—corresponding to a 1–2.5% productivity loss. This substantial

impact underscores the disproportionate role of energy in driving misallocation and highlights

the need to scrutinize energy use more closely as a critical contributor to economy-wide

productivity gaps. These distortions suggest that energy is not flowing efficiently toward its
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most productive uses, potentially due to pricing rigidities, subsidies, or a lack of coordination

between energy and industrial policy.

When the elasticity of substitution is raised to σ = 7, overall productivity losses

decrease: Â rises to 0.841–0.854. As expected, greater substitutability allows for more

reallocation within sectors across provinces, improving both within- and between-sector

efficiency. The within-sector component (Âwithin) improves to 0.858–0.877, reflecting better

resource reallocation (i.e., 12-15 % productivity loss) across provinces within the same sector.

However, the between-sector term remains constant by construction and continues to reflect

the persistent inefficiencies tied to factor-specific distortions.

In sum, the decomposition points to two key inefficiency channels: persistent

interprovincial frictions in input use within sectors, and misallocation across sectors that is

driven largely by capital and especially energy inputs. While labor appears to be allocated

efficiently, capital and energy distortions account for the bulk of the sectoral misallocation

losses—approximately 2–3% of potential productivity each year. These findings elevate energy

from a secondary concern to a central issue in misallocation, and highlight the need for more

targeted reforms in provincial energy pricing, infrastructure, and industrial strategy.

5 Conclusion

This paper quantifies the productivity loss in Canada resulting from the misallocation

of energy, labor, and capital across sectors and provinces. By extending the standard

misallocation framework to include energy as a distinct input and using detailed provincial

input-output data, I quantify the potential gains when the inputs are reallocated across

provinces and sectors optimally and decompose this gains into interprovincial and intersectoral

terms where intersectoral term is further decomposed into factors contribution from an efficient

benchmark.

The findings reveal substantial inefficiencies. Under a conservative elasticity of

substitution (σ = 3), reallocating inputs efficiently across provinces and sectors could increase

aggregate output by up to 32%. Even with a more elastic assumption (σ = 7), the potential

gain from optimal reallocation remains sizable at 15%. Decomposing these losses reveals that

interprovincial misallocation—driven largely by regulatory fragmentation and limited energy

trade—accounts for the majority of the productivity gap. Within provinces, labor appears to

be nearly efficiently allocated, while capital misallocation contributes approximately 1% to

the loss. Energy misallocation, however, accounts for 1–2.5% of the total, making it the most

inefficiently used input despite its relatively small share in total input costs (around 8% on

average).
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These results highlight two key points. First, energy plays a disproportionately large

role in shaping aggregate productivity, despite its relatively small share in production—a

characteristic that has often led to its omission in misallocation analyses. This underscores

the need to recognize energy as a critical driver of aggregate productivity loss and to

incorporate it more systematically into future misallocation frameworks, while also integrating

energy policy more centrally into broader productivity and growth strategies.. Second,

interprovincial fragmentation—including trade barriers and regulatory differences—remains a

major obstacle to efficient resource allocation, suggesting that greater coordination across

provincial regulations and investment in interprovincial trade infrastructure could yield sizable

economic gains.

In conclusion, the results underscore the importance of considering both spatial

and input-specific dimensions of misallocation when evaluating aggregate productivity. By

explicitly incorporating energy as a distinct factor of production, this paper adds a critical

layer to the misallocation literature and demonstrates that even relatively small inputs can

generate sizable distortions when poorly allocated. The Canadian context—with its provincial

regulatory heterogeneity and limited internal trade—further illustrates how institutional

frictions can amplify inefficiencies. While focused on Canada, the analysis offers broader

lessons for federal systems with fragmented energy regulation or limited interregional energy

trade, such as the United States, Australia, or European countries. These insights provide a

foundation for future research on province-sector level misallocation and the role of coordina-

tion in national productivity strategies. Addressing these inefficiencies is not only essential

for unlocking Canada’s growth potential but also for aligning economic and climate objectives

in a coherent policy framework.
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Appendix

5.1 Derivation of Sectoral Shares

To determine θs, we solve the maximization problem:

max
Ys

PY −
∑
s

PsYs. (5.1)

Plugging in the production function:

Y =
S∏

s=1

Y θs
s , (5.2)

the first-order condition gives:

PθsY
−1
s

S∏
s=1

Y θs
s = Ps. (5.3)

Multiplying both sides by Ys yields:

Pθs

S∏
s=1

Y θs
s = PsYs. (5.4)

Solving for θs:

θs =
PsYs

PY
. (5.5)

Now, plugging Ys into the expression for Y would give us

Y =
S∏

s=1

(
θsPY

Ps

)θs

= PY
∑

θs

S∏
s=1

(
θs
Ps

)θs

(5.6)

As
∑S

s=1 θs = 1, we get

P =
S∏

s=1

(
Ps

θs

)θs

(5.7)
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5.2 Province-Level Pricing and Revenue

Provinces solve:

max
Ysi

Ps

(∑
i

Y
σ−1
σ

si

) σ
σ−1

−
∑
i

PsiYsi. (5.8)

FOC yields:

Psi = PsY
1
σ
s Y

−1
σ

si , (5.9)

and thus,

PsiYsi = PsY
1
σ
s Y

σ−1
σ

si . (5.10)

5.3 Derivation of the Sectoral Price Index

We derive the sectoral price index Ps using the cost minimization problem.

The total output in sector s is given by a CES aggregator of individual variety

outputs Ysi:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

, (5.11)

where σ > 1 is the elasticity of substitution between varieties.

To derive Ps, consider a cost-minimizing province solving the problem:

min
Ysi

∑
i

PsiYsi subject to Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

. (5.12)

We form the Lagrangian:

L =
∑
i

PsiYsi + λs

(
Y

σ−1
σ

s −
∑
i

Y
σ−1
σ

si

)
. (5.13)

The first-order condition with respect to Ysi is:

Psi − λs
σ − 1

σ
Y

− 1
σ

si = 0. (5.14)

Total costs are given by

∑
i

PsiYsi =
∑
i

λs
σ − 1

σ
Y

− 1
σ

si Ysi = λs
σ − 1

σ

∑
i

Y
σ−1
σ

si = λs
σ − 1

σ
Y

σ−1
σ

s (5.15)
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Rearranging yields the demand function,

Y
σ−1
σ

si =

(
λs

1

Psi

σ − 1

σ

)σ−1

. (5.16)

Now we solve for λs,

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

=

(
λs

σ − 1

σ

)σ
(∑

i

(
1

Psi

)σ−1
) σ

σ−1

(5.17)

λs =
σ

σ − 1
Y

1
σ
s

(∑
i

(
1

Psi

)σ−1
) −1

σ−1

(5.18)

Plugging this into our total cost expression yields

∑
i

PsiYsi = λs
σ − 1

σ
Y

σ−1
σ

s = Y
1
σ
s

(∑
i

(
1

Psi

)σ−1
) −1

σ−1

Y
σ−1
σ

s = Ys

(∑
i

P 1−σ
si

) 1
1−σ

(5.19)

Therefore, based on the following equation

∑
i

PsiYsi = PsYs (5.20)

we conclude that

Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(5.21)

5.4 Production Function

The Cobb-Douglas production function at the province level is:

Ysi = AsiK
αs
si L

βs

siE
γs
si , where αs + βs + γs = 1. (5.22)

5.5 Distortions in Input Markets

Each input is subject to a distortion τKsi
, τLsi

, τEsi
, so that firms face distorted input

prices. The firm’s problem is:

max
Ksi,Lsi,Esi

PsY
1
σ
s Y

σ−1
σ

si − (1 + τKsi
)rKsi − (1 + τLsi

)wLsi − (1 + τEsi
)pEEsi. (5.23)
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We can rewrite this problem by using Ysi = AsiK
αs
si L

βs

siE
γs
si :

max
Ksi,Lsi,Esi

PsY
1
σ
s

(
AsiK

αs
si L

βs

siE
γs
si

)σ−1
σ −(1+τKsi

)rKsi−(1+τLsi
)wLsi−(1+τEsi

)pEEsi. (5.24)

The first-order conditions (FOCs) for optimal input choices are:

MRPKsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si αs
Ysi

Ksi

= (1 + τKsi
)r, (5.25)

MRPLsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si βs
Ysi

Lsi

= (1 + τLsi
)w, (5.26)

MRPEsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si γs
Ysi

Esi

= (1 + τEsi
)pE. (5.27)

Marginal revenue products:

MRPKsi = αs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Ksi

= αs
(σ − 1)

σ

PsiYsi

Ksi

= (1 + τKsi
)r, (5.28)

MRPLsi = βs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Lsi

= βs
(σ − 1)

σ

PsiYsi

Lsi

= (1 + τLsi
)w, (5.29)

MRPEsi = γs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Esi

= γs
(σ − 1)

σ

PsiYsi

Esi

= (1 + τEsi
)pE. (5.30)

Now,

TFPQsi = Asi =
Ysi

Kαs
si L

βs

siE
γs
si

(5.31)

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

βs

siE
γs
si

(5.32)

Now, lets take the geometric average of Marginal revenue product of each input

with their sector shares

(MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs

= (α
(σ − 1)

σ

PsiYsi

Ksi

)αs(β
(σ − 1)

σ

PsiYsi

Lsi

)βs(γ
(σ − 1)

σ

PsiYsi

Esi

)γs

= ((1 + τKsi
)r)αs((1 + τLsi

)w)βs((1 + τEsi
)pE)

γs

= αs
αsβs

βsγs
γs
(σ − 1)

σ

PsiYsi

Kαs
si L

βs

siE
γs
si

= αs
αsβs

βsγs
γs
(σ − 1)

σ
TFPRsi

(5.33)

17



Hence,

TFPRsi ∝ (MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs ∝ ((1 + τK))

αs((1 + τL))
βs((1 + τE))

γs

(5.34)

This formulation explicitly shows how TFPR is the geometric mean of marginal

revenue products.

Now, to recover distortions we will go back to equations of marginal revenue product

of inputs and normalize them in a specific way to get distortions explicitly so we can calculate

it with data.

Recall that

αs
(σ − 1)

σ

PsiYsi

rKsi

= (1 + τKsi
) (5.35)

βs
(σ − 1)

σ

PsiYsi

wLsi

= (1 + τLsi
) (5.36)

γs
(σ − 1)

σ

PsiYsi

pEEsi

= (1 + τEsi
) (5.37)

Take the average of both sides and set the average distortions to 0 to get.

∑
i

τKsi
=
∑
i

τLsi
=
∑
i

τEsi
= 0 (5.38)

To identify province-level distortions relative to a sectoral benchmark, we normalize

the average distortion to zero:

1

I

I∑
i

αs
(σ − 1)

σ

PsiYsi

rKsi

=
1

I

I∑
i

(1 + τKsi
) = 1 (5.39)

1

I

I∑
i

βs
(σ − 1)

σ

PsiYsi

wLsi

=
1

I

I∑
i

(1 + τLsi
) = 1 (5.40)

1

I

I∑
i

γs
(σ − 1)

σ

PsiYsi

pEEsi

=
1

I

I∑
i

(1 + τEsi
) = 1 (5.41)

This allows us to interpret each τKsi
, τLsi

, τEsi
as a deviation from the sectoral mean,

effectively treating the average province as undistorted.

Now,
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αs
(σ−1)

σ
PsiYsi

rKsi

1
I

∑I
i αs

(σ−1)
σ

PsiYsi

rKsi

= (1 + τKsi
) (5.42)

PsiYsi

rKsi

1
I

∑I
i

PsiYsi

rKsi

= (1 + τKsi
) (5.43)

PsiYsi

wLsi

1
I

∑I
i

PsiYsi

wLsi

= (1 + τLsi
) (5.44)

PsiYsi

pEEsi

1
I

∑I
i

PsiYsi

pEEsi

= (1 + τEsi
) (5.45)

With this simple trick we get rid of σ and sector share constants (αs, βs, γs)

As we are already having distortions the next step is to calculate sector-level weighted

averages of marginal revenue products.

we can start with

MRPKs =

∑
i KsiMRPKsi∑

i Ksi

=

∑
i αs

σ−1
σ
PsiYsi∑

i αs
σ−1
σ

PsiYsi

r(1+τKsi
)

=

∑
i PsiYsi∑

i
PsiYsi

r(1+τKsi
)

(5.46)

Given that sectoral revenue PsYs =
∑

i PsiYsi we can write that

MRPKs =
r∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(5.47)

Finally,

MRPKs

MRPKsi

=

r∑
i

1
(1+τKsi

)

PsiYsi
PsYs

r(1 + τKsi
)

=
1

(1 + τKsi
)
∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(5.48)

Similar algebra yields,

MRPLs

MRPLsi

=
1

(1 + τLsi
)
∑

i
1

(1+τLsi
)
PsiYsi

PsYs

(5.49)

MRPEs

MRPEsi

=
1

(1 + τEsi
)
∑

i
1

(1+τEsi
)
PsiYsi

PsYs

(5.50)

It is straightworward to see these equaitons are equal to 1 if there were no distortions.

Given that we have explicit formulas for distortions and marginal revenue products
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compared to sector averages we can move forward to calculate the output implications of

these.

Now recall that we have derived the expression

PsiYsi = PsY
1
σ
s Y

σ−1
σ

si . (5.51)

if we divide each side by PsYs we would get

PsiYsi

PsYs

=

(
Ysi

Ys

)σ−1
σ

, (5.52)

Taking the geometric average across all factors K, L, and E:

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ

=

(∑
iKsiMRPKsi

MRPKsi

∑
i Ksi

)α(∑
i LsiMRPLsi

MRPLsi

∑
i Lsi

)β (∑
i EsiMRPEsi

MRPEsi

∑
i Esi

)γ

(5.53)

Now recalling the formulas for Marginal revenue products we can see that∑
i

KsiMRPKsi =
∑
i

LsiMRPLsi =
∑
i

EsiMRPEsi ∝
∑
i

PsiYsi = PsYs (5.54)

as αs, βs, andγs sums up to 1, we have PsYs in numerator. Also, note that

∑
i

Ksi = Ks,
∑
i

Lsi = Ls,
∑
i

Esi = Es, (5.55)

finally, the geometric average of marginal revenue products is proportional to

TFPRsi = PsiAsi

Then we have,

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ

=
PsYs

PsiAsiKαs
s Lβs

s Eγs
s

=
PsAs

PsiAsi

(5.56)

We have
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Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(5.57)

To isolate As we can multiply the expression by Asi and take the power of (σ − 1)

and some over provinces.

∑
i

(
�
�AsiPsAs

Psi�
�Asi

)σ−1

= (PsAs)
(σ−1)

∑
i

P
(1−σ)
si = Aσ−1

s (5.58)

if we take the power of 1/(σ − 1) we arrive at TFPs = As by applying the same

operations to the left-hand side we get an expression for TFPs

As =

∑
i

(
Asi

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

. (5.59)

Finally we get an expression for Asi to bring this model into data. Recall that

PsiYsi = Ps(Ys)
1
σY

σ−1
σ

si (5.60)

this implies

Ysi = (Ps(Ys)
1
σ )

−σ
1−σ (PsiYsi)

σ
σ−1 (5.61)

therefore,

Asi =
(PsYs)

−1
σ−1

Ps

(PsiYsi)
σ

σ−1

Kαs
si L

βs

siE
γs
si

(5.62)

So

Asi ∝
(PsiYsi)

σ
σ−1

Kαs
si L

βs

siE
γs
si

(5.63)

5.6 Productivity Decomposition

We begin by defining sector-level total factor productivity As using a Cobb-Douglas

production function, where output Ys is produced using capital Ks, labor Ls, and energy Es:

As =
Ys

Kαs
s Lβs

s Eγs
s

(5.64)
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Sectoral output Ys aggregates province-level outputs Ysi through a constant elasticity

of substitution (CES) aggregator with elasticity σ:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

(5.65)

Substituting province-level production functions Ysi = AsiK
αs
si L

βs

siE
γs
si into the CES

aggregator, we express sectoral TFP as:

⇒ As =

(∑
i

(
AsiK

αs
si L

βs

siE
γs
si

)σ−1
σ

) σ
σ−1

Kαs
s Lβs

s Eγs
s

(5.66)

=

∑
i

(
Asi

(
Ksi

Ks

)αs
(
Lsi

Ls

)βs
(
Esi

Es

)γs
)σ−1

σ


σ

σ−1

(5.67)

Note that this expression is just normalizing province-level inputs by the sector

total, for which we know explicitly what they are.

ksi =
Ksi

Ks

=
Ksi∑
i Ksi

=

αs

r
σ−1
σ

PsiYsi

(1+τKsi
)∑

i
αs

r
σ−1
σ

PsiYsi

(1+τKsi
)

=
Rsi/(1 + τKsi

)∑
i Rsi/(1 + τKsi

)
(5.68)

Let revenue shares Rsi =
PsiYsi

PsYs

, ksi =
Ksi

Ks

, lsi =
Lsi

Ls

, esi =
Esi

Es

(5.69)

⇒ As =

[∑
i

(
Asik

αs
si l

βs

si e
γs
si

)σ−1
σ

] σ
σ−1

(5.70)

It is straightforward to see that the fully efficient allocation yields a sector-level

TFP A∗
s expressed as:

A∗
s =

[∑
i

Aσ−1
si

] 1
σ−1

(5.71)

Dividing the actual level of TFP As to efficient level of TFP A∗
s we get:
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As

A∗
s

=

[∑
i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
iA

σ−1
si

] 1
σ−1

(5.72)

Moving to the national level, we express national TFP (i.e., A ) as:

A =
Y

K ᾱLβ̄E δ̄
=

∏
s Y

θs
s

K ᾱLβ̄E δ̄
, ᾱ =

∑
s

αsθs (5.73)

=
∏
s

(
AsK

αs
s Lβs

s Eγs
s

KαsLβsEγs

)θs

(5.74)

=
∏
s

Aθs
s

(
Ks

K

)αsθs (Ls

L

)βsθs (Es

E

)γsθs

(5.75)

=
∏
s

(
As

(
Ks

K

)αs
(
Ls

L

)βs
(
Es

E

)γs
)θs

(5.76)

K =
∑
s

Ks =
∑
s

∑
i

Ksi (5.77)

ks =
Ks

K
=

∑
i Ksi∑

s

∑
i Ksi

, =

∑
i
αs

r

(
σ−1
σ

)
PsiYsi

1+τKsi∑
s

∑
i
αs

r

(
σ−1
σ

)
PsiYsi

1+τKsi

=

∑
i αs

PsiYsi

1+τKsi∑
s

∑
i αs

PsiYsi

1+τKsi

(5.78)

=
αs

∑
i

PsiYsi

1+τKsi∑
s αs

∑
i

PsiYsi

1+τKsi

=
αsPsYs

∑
i

Rsi

1+τKsi∑
s αsPsYs

∑
i

Rsi

1+τKsi

(5.79)

as Rsi = PsiYsi/PsYs

Ks

K
=

αsPsYs

∑
iRsi/(1 + τKsi

)∑
s αsPsYs

∑
iRsi/(1 + τKsi

)
=

αsPsYs

∑
i Rsi/(1 + τKsi

)∑
s αsPsYs

∑
i Rsi/(1 + τKsi

)
(Actual ks) (5.80)

If we define (harmonic mean of sector-level distortions),

1 + τKs =
1∑

i
Rsi

1+τKsi

(harmonic mean) (5.81)
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and recalling that θs = PsYs/PY then we can write

ks =
Ks

K
=

αsθs/(1 + τKs)∑
s αsθs/(1 + τKs)

(5.82)

Also, as there is no distortions in optimal allocation we can simply write

k∗
s =

K∗
s

K∗ =
αsθs∑
s αsθs

(5.83)

⇒ ks
k∗
s

=

(
1

1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

(5.84)

Similar algebra yields,

⇒ ls
l∗s

=

(
1

1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

(5.85)

⇒ es
e∗s

=

(
1

1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

(5.86)

Now, if we divide the actual national TFP A to efficient level of national TFP A∗

we get:

A

A∗ =
∏
s

((
As

A∗
s

)(
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

(5.87)

A

A∗ =
∏
s

(
As

A∗
s

)θs

︸ ︷︷ ︸
Within-sector misallocation

×
∏
s

((
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

︸ ︷︷ ︸
Between-sector misallocation

(5.88)

A

A∗ =
∏
s

(
As

A∗
s

)θs

×
∏
s


(
ks
k∗
s

)αs

︸ ︷︷ ︸
Capital

misallocation

·
(
ls
l∗s

)βs

︸ ︷︷ ︸
Labor

misallocation

·
(
es
e∗s

)γs

︸ ︷︷ ︸
Energy

misallocation


θs

(5.89)

We can write the within portion of the expression explicitly as:
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(
A

A∗

)
within

=
∏
s


[∑

i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(5.90)

We can also write the between portion explicitly as:

(
A

A∗

)
between

=
∏
s



(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αs
(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs
(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γs


θs

(5.91)

To further decompose the between term to find each input misallocation contribution

we can write the following expressions.

(
A

A∗

)
capital

=
∏
s


(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αsθs

(5.92)

(
A

A∗

)
labor

=
∏
s



(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs


θs

(5.93)

(
A

A∗

)
energy

=
∏
s


(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γsθs

(5.94)

Therefore,

A

A∗ =

(
A

A∗

)
within

×
(

A

A∗

)
between

=

(
A

A∗

)
within

×
(

A

A∗

)
capital

×
(

A

A∗

)
labor

×
(

A

A∗

)
energy

(5.95)

or more compactly,

Â = Âwithin × Âbetween (5.96)
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Or,

Â = Âwithin × Âcapital × Âlabor × Âenergy (5.97)
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