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Abstract

This paper quantifies how misallocation of energy, alongside capital and labor, across provinces

and sectors reduces productivity. Using Canadian provincial input–output data (2014–2020)

within a Hsieh–Klenow framework, I decompose productivity losses into interprovincial

(within-sector) and intersectoral (within-province) components and estimate each input’s

contribution separately. Unlike most studies focused on the manufacturing sector, this is the

first comprehensive analysis of energy misallocation covering the entire economy. Results

suggest misallocation lowers aggregate productivity by 5–8%, with most of the gap driven

by within-sector distortions. Energy, though only around 8% of input costs, accounts for up

to 1.5% of the gap—comparable to capital and exceeding labor—highlighting its outsized

role. The findings identify interprovincial barriers and energy market distortions as key

areas for narrowing productivity gaps and guiding climate policy. Reallocating energy could

significantly improve productivity while reducing emissions, delivering a ‘double dividend.’
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1 Introduction

What are the productivity losses from energy misallocation, and how do they compare

with those from capital and labor? This paper addresses this question by quantifying the

contribution of energy, capital, and labor misallocation to aggregate productivity losses across

provinces and sectors. I argue that energy is not only an essential input to production, but also

has unique characteristics that make its misallocation particularly relevant for understanding

productivity losses. While energy represents a relatively small share of production inputs, I

find that its misallocation has a disproportionately large impact on productivity.

The idea that resource misallocation depresses output is well established Hsieh and Klenow

(2009); Jones (2011); Bartelsman et al. (2013); Restuccia and Rogerson (2017); Restuccia

(2019). Most of the literature, however, focuses on capital and labor allocation across firms

within manufacturing sectors Restuccia and Rogerson (2008); Bartelsman et al. (2013); Chen

and Irarrazabal (2015); Gopinath et al. (2017); Carrillo et al. (2023). Some of them focus on

land misallocation Restuccia and Santaeulalia-Llopis (2017); Chen et al. (2023). In contrast,

energy—measured as direct purchases from sectors such as electricity, oil and natural gas,

petroleum, coal, and other fuels—has received little attention Tombe and Winter (2015);

Asker et al. (2019); Choi (2020), despite its central role in production and its high exposure

to regulation, infrastructure, and policy frictions. This paper brings energy to the forefront,

treating it as a third factor of production alongside capital and labor, and quantifies how its

misallocation reduces productivity across sectors and provinces.

Energy differs from capital and labor in several critical ways. First, it is geographically less

mobile: electricity grids, pipelines, and refinery capacity create sharp interprovincial differences

in cost and availability. Second, energy prices are shaped by provincial regulations, climate

policy, ownership structures, and subsidies, which limit adjustment through competitive

markets. Third, unlike capital or labor, most forms of energy must be consumed close to

the time of production—electricity especially—making short-run misallocation particularly

costly. Fourth, energy markets are highly exposed to global price shocks in oil, gas, and coal,

which can propagate unevenly across provinces, unlike wages or capital rental rates, which

generally adjust more slowly and with less interprovincial variation. Finally, energy is closely

linked to both capital and labor, complementing other inputs, so its misallocation can have

cascading effects throughout the economy. These distinctive features of energy markets make

Canada, with its diverse provincial regulations and infrastructure constraints, a particularly

compelling setting to examine energy misallocation.

In Canada, provincial governments are primary authorities over energy regulation, pricing,

and infrastructure, leading to substantial variation in energy costs and supply across provinces
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and sectors. At the same time, interprovincial trade remains fragmented: barriers to

transporting electricity, oil, and gas across borders persist, limiting the scope for arbitrage.

Some studies focusing on the Canadian economy estimate the productivity losses from internal

trade barriers at 3–7% Albrecht and Tombe (2016); Alvarez et al. (2019), but the focus of their

analysis is on final goods. In contrast, this paper focuses on input allocation, highlighting

that frictions in energy markets—a key production input—are a significant and underexplored

source of aggregate productivity losses. By positioning energy misallocation within the

broader internal trade debate, this paper underscores its policy relevance: more efficient

allocation can simultaneously boost productivity and reduce environmental damage.

This analysis is highly relevant to Canada’s environmental challenges and ongoing policy

debates. Productivity gains from energy efficiency reduce both production costs and emissions,

generating a “double dividend” Goulder (1995). I find that energy misallocation accounts for

up to 2% of aggregate productivity losses (combining within- and between-sector components),

suggesting these potential efficiency gains could significantly lower the economic cost of

achieving climate targets. In the context of varying provincial carbon pricing and renewable

energy potentials Tombe and Winter (2015); MacNab (2017), reallocating energy to its most

productive uses can help meet national climate goals more efficiently. Furthermore, improving

interprovincial energy flows can reduce reliance on local sources with higher emissions,

providing environmental benefits that GDP-based measures alone may fail to capture. These

characteristics of the Canadian economy further highlight energy misallocation as both an

economic and environmental concern, with direct implications for infrastructure planning

and climate policy.

Methodologically, this paper extends the Hsieh–Klenow (2009) framework by incorporating

energy as a third input and allowing for imperfect substitution across provinces using an

Armington-style CES aggregator. This extension captures the persistence of interprovincial

price differences, which imply that provincial outputs are not perfect substitutes. Using

detailed Statistics Canada provincial input–output tables from 2014–2020, I measure marginal

revenue products of energy, capital, and labor at the province–sector level and compare them

with efficient benchmarks. This approach allows me to decompose aggregate productivity

losses into within-sector (interprovincial) and within-province (intersectoral) components,

and to quantify how much each input contributes to productivity losses separately.

The results reveal substantial efficiency losses. Depending on the elasticity of substitution,

aggregate productivity could be 8–9.4% higher under efficient allocation. Most of this loss

originates from interprovincial misallocation: within-sector distortions account for 3.4–4.3

percentage points of the gap, compared with 1.3–4.0 points for intersectoral distortions. Energy

consistently emerges as a key driver, explaining up to 1.6 percentage points of the within-
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sector loss and rivaling or exceeding the contributions of labor in most years. This suggests

that interprovincial frictions in energy allocation—driven by regulation, infrastructure, and

policy barriers—emerge as a key contributor to productivity gaps.

This paper makes several contributions. First, it provides the first comprehensive estimates

of energy misallocation using province–sector input-output tables, moving beyond firm-level

and manufacturing-focused analyses. Second, it connects allocative inefficiency in energy use

to interprovincial trade frictions and infrastructure barriers, complementing and extending the

literature on internal trade. Third, it frames energy misallocation as both an economic and

environmental challenge: reallocating energy more efficiently generates a “double dividend,”

boosting productivity while reducing emissions. Fourth, it incorporates a spatial dimension,

accounting for interprovincial variation in energy allocation, which is novel in the context

of energy misallocation. Together, the results show that more integrated energy markets,

streamlined regulations, and infrastructure investments can improve interprovincial energy

flows and enhance productivity.

The remainder of the paper proceeds as follows. Section 2 describes the data and

measurement approach. Section 3 develops the theoretical framework. Section 4 presents the

main results. Section 5 concludes.

2 Data

This study examines the data from the Provincial Symmetric Input-Output Tables

(Catalogue no. 15-211-X) published by Statistics Canada’s Industry Accounts Division. These

tables provide a comprehensive, annually consistent depiction of inter-industry transactions

at the provincial level in Canada. Specifically, I utilize the detailed aggregation level for the

years from 2014 to 2020 inclusive, which offers a high-resolution view of economic flows across

provinces and sectors. The analysis covers 234 sectors and 10 Canadian provinces, providing

a comprehensive view of regional production structures and inter-industry dependencies.

The symmetric input-output tables restructure the standard supply and use tables into

an industry-by-industry framework, allowing for clearer identification of the production

structure and intermediate demand relationships. The data captures all inter-sectoral

purchases—including expenditures on imports, inventory withdrawals, and primary in-

puts—making them well-suited for structural and efficiency analyses. The final demand

tables similarly record all purchases by final demand categories from provincial and imported

sources.

The data used reflect Statistics Canada’s most detailed industry classifications and are

harmonized across years, enabling consistent cross-provincial and intertemporal comparisons.
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The version of the tables used in this study corresponds to the level of aggregation that was

previously known as “Aggregation Level S,” which was renamed “Detailed” in 20191.

3 Model

3.1 Aggregate Output and Sectoral Shares

I consider a standard model of monopolistic competition with heterogeneous provinces,

indexed by i. I closely follow the framework of (Hsieh and Klenow, 2009) with a natural

extension of energy as an input in the production function. In the economy, Cobb-Douglas

production technology produces a single final product Y :

Y =
S∏

s=1

Y θs
s , where

S∑
s=1

θs = 1. (3.1)

θs =
PsYs

PY
is the revenue share of the sector in the final national product. Here Ps refers to

the price of product Ys, and P refers to the price of final good. The output of each sector, Ys,

is assumed as a Constant Elasticity of Substitution (CES) aggregate of contributions from

each province i, given by:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

(3.2)

σ is the elasticity of substitution between provinces and is assumed to be constant.

The sectoral profit maximization problem yields the aggregate price index P .2

P =
S∏

s=1

(
Ps

θs

)θs

(3.3)

Intuitively, the aggregate price index can be interpreted as a geometric mean of sectoral

prices, weighted by their revenue shares. In this formulation, sectors that account for a larger

share of national production have a proportionally greater influence on the overall price level.

Furthermore, profit maximization at the province level yields the optimal revenue at the

province–sector level.3

1For methodological transparency and further technical detail, the construction of these tables is docu-
mented by Statistics Canada and available through direct inquiry with the Industry Accounts Division.

2See Appendix B.1 for the derivation.
3See Appendix B.2 for the derivation.
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PsiYsi = PsY
1
σ
s Y

σ−1
σ

si = P 1−σ
si P σ

s Ys. (3.4)

The second equality follows from straightforward algebra, obtained by raising both sides of

the first expression to the power σ and rearranging terms.

The cost minimization problem at the provincial level gives us the sectoral price index.4

Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(3.5)

Next, I introduce the terms of the production function and productivity. Consider the

standard profit maximization problem for sector s in province i. The production function is

assumed to be Cobb-Douglas with three inputs: capital (K), labor (L) and energy (E):

Ysi = AsiK
αs
si L

βs

siE
γs
si , where αs + βs + γs = 1. (3.6)

Here, Asi denotes total factor productivity in physical units (TFPQ). Input shares are allowed

to vary across sectors but are held constant across provinces within a sector. Each sector s

in province i then solves the following profit maximization problem.

max
Ksi,Lsi,Esi

PsiYsi − (1 + τKsi
)rKsi − (1 + τLsi

)wLsi − (1 + τEsi
)pEEsi (3.7)

Each input is subject to input distortions τKsi
, τLsi

, τEsi
, so that sectors in each province face

distorted input prices. By substituting the expressions for Ysi and PsiYsi above, we solve this

standard problem to obtain the marginal revenue products for each input.5

MRPKsi = αs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Ksi

= αs
(σ − 1)

σ

PsiYsi

Ksi

= (1 + τKsi
)r, (3.8)

MRPLsi = βs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Lsi

= βs
(σ − 1)

σ

PsiYsi

Lsi

= (1 + τLsi
)w, (3.9)

MRPEsi = γs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Esi

= γs
(σ − 1)

σ

PsiYsi

Esi

= (1 + τEsi
)pE. (3.10)

Where MRPKsi,MRPLsi,MRPEsi are the marginal revenue products of capital, labor,

and energy, respectively.

Define the following productivity measures:

4See Appendix B.3 for the derivation
5See Appendix B.4 for the derivation.
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TFPQsi = Asi =
Ysi

Kαs
si L

βs

siE
γs
si

(3.11)

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

βs

siE
γs
si

(3.12)

where TFPQ denotes total factor productivity in physical terms, which may naturally differ

across sectors without implying any distortion. In contrast, TFPR indicates total factor

revenue productivity, and it should be equalized across provinces and sectors if it were not

for distortions. Thus, any observed dispersion in TFPR reflects misallocation of inputs and

translates into a lower aggregate output.

It is straightforward to show that the geometric mean of marginal revenue products is

proportional to TFPR, and equivalently, to the geometric mean of the distortion terms (τ).6

Hence,

TFPRsi ∝ (MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs

∝ (1 + τKsi
)αs(1 + τLsi

)βs(1 + τEsi
)γs

(3.13)

Defining the sectoral weighted average marginal revenue product for inputs as follows.

MRPKs =

∑
i KsiMRPKsi∑

i Ksi

(3.14)

We can then calculate deviations from the weighted sectoral averages which capture the

dispersion and, consequently, the degree of input misallocation.7

MRPKs

MRPKsi

=
1

(1 + τKsi
)
∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(3.15)

MRPLs

MRPLsi

=
1

(1 + τLsi
)
∑

i
1

(1+τLsi
)
PsiYsi

PsYs

(3.16)

MRPEs

MRPEsi

=
1

(1 + τEsi
)
∑

i
1

(1+τEsi
)
PsiYsi

PsYs

(3.17)

Intuitively, these are the deviations from the optimal allocation of inputs across sectors and

provinces.

6See Appendix B.4 for the derivation.
7See Appendix B.5 for the derivation.
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By rearranging terms and simplifying, we arrive at the following expression:

As =

∑
i

(
Asi

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

(3.18)

This expression represents total factor productivity at the sector level. It allows a direct

comparison between the observed sectoral productivity and the efficient benchmark. In the

absence of distortions (τK = τL = τE = 0) As attains its efficient level A∗
s. When distortions

are present, provinces with larger distortions contribute less than their optimal level to

sectoral output, therefore reducing aggregate TFP.

A∗
s =

(∑
i

Aσ−1
si

) 1
σ−1

(3.19)

The ratio of observed productivity to its efficient benchmark defines the sectoral productivity

gap, which can be expressed as:

As

A∗
s

=

∑
i

(
Asi

A∗
s

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

(3.20)

This formulation shows that sectoral TFP, As, is maximized when marginal products of

capital, labor, and energy are equalized across provinces. In that efficient allocation, each

province contributes proportional to its underlying productivity Asi, and sectoral TFP reaches

A∗
s. When distortions drive wedges between marginal products, inputs are misallocated: some

provinces operate with too little capital, labor, or energy while others have too much. This

dispersion reduces the effective weight of distorted provinces in the CES aggregator, lowering

observed sectoral TFP relative to the efficient benchmark.

3.2 Aggregate Productivity

To obtain aggregate productivity, I express total output in terms of sectoral outputs,

using the Cobb-Douglas production technology at the sector level as assumed above, with

sector shares θs. This formulation then leads to:8

A

A∗ =
∏
s

((
As

A∗
s

)(
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

(3.21)

8See Appendix B.7 for the derivation.
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This expression shows that aggregate productivity relative to its efficient benchmark depends

jointly on sector-level productivity, As

A∗
s
, and the allocation of capital, labor, and energy across

sectors. Deviations of these factors from their efficient levels (k∗
s , l

∗
s , e

∗
s) reduce aggregate

productivity, reflecting input misallocation both within and across sectors.

3.3 Aggregate Productivity Decomposition

We decompose national-level productivity to identify how distortions in input allocation

contribute to overall welfare loss. Let x̂ = x/x∗ denote the ratio of the observed variable to

its efficient benchmark (i.e., in the absence of distortions). Aggregate productivity gap, Â, at

the national level can be expressed as:

Â =
A

A∗ =
∏
s

(
As

A∗
s

)θs

︸ ︷︷ ︸
Within-sector misallocation

×
∏
s

((
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

︸ ︷︷ ︸
Between-sector misallocation

(3.22)

The first term captures within-sector misallocation, while the second captures between-sector

misallocation. At the aggregate level, within-sector productivity gap, Âwithin, can be written

as:

∏
s


[∑

i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(3.23)

Here, Rsi = PsiYsi/PsYs is the revenue share of province i in sector s. Similarly, between-sector

misallocation, Âbetween, is expressed as:

∏
s



(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αs

︸ ︷︷ ︸
Capital Misallocation

×


(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs

︸ ︷︷ ︸
Labor Misallocation

×


(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γs

︸ ︷︷ ︸
Energy Misallocation


θs

(3.24)

Where 1 + τKs =

(∑
i

Rsi

1 + τKsi

)−1

denotes the harmonic mean of 1 + τKsi
weighted by

Rsi.
9 The harmonic mean captures the effective price distortions weighted by revenue shares.

9See Appendix B.7 for the derivation.
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This decomposition allows us to calculate the productivity loss from misallocation of various

inputs, as well as the within-sector and between-provinces. Therefore, we can identify how

much of the overall productivity gap is due to misallocation of each specific input, as well as

inefficiencies within sectors across provinces.

4 Results

I begin showing the dispersion of marginal revenue products for each input by using the

regression residuals from the following equation.10

ln(
PsiYsi

rKsi

) = β0 +
∑
s

βsγs + ϵsi (4.1)

Here, the dependent variable is the ratio of revenue to capital spending. The term β0 captures

constant factors that are common across provinces, such as the province-level substitutability

parameter σ, the rental rate of capital, the wage level, and the price of energy. The sector-level

fixed effects, γs, reflect sector-specific averages. Finally, the residual term, ϵsi, measures the

dispersion of marginal revenue products from their sector-level averages after accounting

for the constant terms and sector-level effects. In the empirical analysis below, the residual

variances from the above regression are used to illustrate the degree of factor misallocation

across sectors and provinces.

In Figure 4.1, I present the distribution of marginal returns to labor, capital, and energy for

2014 and 2020. The comparison reveals distinct patterns of input allocation across provinces

and sectors. Labor displays the lowest dispersion in both years, suggesting relatively limited

misallocation. This is consistent with the literature, which finds that labor markets typically

adjust more flexibly across regions and sectors. Capital also shows signs of improvement,

with its distribution becoming more compressed over time, pointing to gains in allocative

efficiency. Energy, however, shows a different pattern. Its dispersion remains wide and largely

unchanged between 2014 and 2020, indicating that relative marginal returns to energy have

not converged across provinces and sectors. Compared to labor and capital, this persistence

suggests that energy is subject to more persistent distortions. As a result, while capital

allocation appears to improve over time, the allocation of energy shows little evidence of

adjustment, implying that differences in energy productivity remain an important source of

overall factor misallocation.

Figure A.2 further examines changes in the dispersion of marginal revenue products across

inputs between 2014 and 2020 at the sector level. For visual clarity, sectors are ranked by

10See Appendix B.6 for details.
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Figure 4.1: Marginal returns to inputs, 2014 vs. 2020.

Notes: The figure compares the distribution of marginal revenue products (MRPs) for capital,
labor, and energy between 2014 and 2020. Residual variances from the regression specification in
Equation B.49 provide a measure of input-specific misallocation. A tighter distribution implies
more efficient allocation, whereas a wider spread reflects stronger distortions and greater potential
gains from reallocation.

the magnitude of these changes, and the top 30 sectors with the largest shifts are plotted.

A decline in variance indicates improved allocative efficiency, whereas an increase reflects

a greater misallocation. The results reveal a heterogeneous pattern: some sectors exhibit

notable efficiency gains, while others experience increasing dispersion, particularly for energy.

It is also common for a sector to improve in one input while showing a deterioration in another.

Labor exhibits the smallest changes in dispersion, whereas capital and energy account for the

majority of variation over the period, with energy displaying the most persistent dispersion.

This sectoral heterogeneity highlights that misallocation is not uniform across the economy

but shaped by sector-specific characteristics and dynamics. In line with the broader misal-

location literature, persistent dispersion often reflects frictions—regulatory, infrastructural,

or institutional—that impede the reallocation of inputs to their most productive uses. In

this context, the evidence indicates that energy is the input where such frictions are most

pronounced.

4.1 Relative TFPR Dispersion by Province

Next, I examine the dispersion of total factor productivity revenue (TFPR) relative to

sectoral averages. Higher dispersion reflects greater productivity losses due to misallocation
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across the economy. By definition, TFPR corresponds to the geometric mean of marginal rev-

enue products under a Cobb–Douglas production function, which allows for a straightforward

expression of TFPR relative to its sectoral mean. To quantify the variation, I compute the

variance of the logarithm of this ratio, capturing the percentage deviation from the sectoral

average. The results are presented for the first and last years of the sample period, 2014 and

2020, at the province level.

TFPRsi

TFPRs

=

[(
MRPKs

MRPKsi

)αs (
MRPLs

MRPLsi

)βs (
MRPEs

MRPEsi

)γs
]−1

(4.2)

This equation implies the following explicit formula that we can use to illustrate the produc-

tivity gap at the provincial level.

Figure 4.2: Relative TFPR dispersion by provinces in 2014

Notes: TFPR is expressed relative to the sectoral average and it reflects the log-distribution
of 4.3. Provinces are ordered by deviation from the sectoral benchmark. Top and bottom 1% of
observations are trimmed for clarity.

TFPRsi

TFPRs

=
(1 + τKsi

)αs(1 + τLsi
)βs(1 + τEsi

)γs(
1∑

i(1+τKsi
)
PsiYsi
PsYs

)αs
(

1∑
i(1+τLsi

)
PsiYsi
PsYs

)βs
(

1∑
i(1+τEsi

)
PsiYsi
PsYs

)γs
(4.3)

This expression shows how a province’s TFPR deviates from the sectoral average as a

function of distortions in the use of capital, labor, and energy. Each input-specific distortion,

denoted by τKsi
, τLsi

, τEsi
, amplifies or reduces the province’s marginal revenue product

relative to the sector mean. The exponents αs, βs, γs reflect the input shares in the production
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function, so the overall TFPR gap aggregates the effect of misallocation across all inputs.

In essence, Equation (4.3) provides a clear, quantitative measure of how much a province’s

productivity is affected by misallocation compared to the sector benchmark, allowing us to

compute and compare the relative efficiency across provinces.

Figure 4.3: Relative TFPR dispersion by provinces in 2020

Notes: TFPR is expressed relative to the sectoral average and it reflects the log-distribution
of 4.3. Provinces are ordered by deviation from the sectoral benchmark. Top and bottom 1% of
observations are trimmed for clarity.

Figures 4.2 and 4.3 present the dispersion of TFPR relative to the sectoral benchmark

for 2014 and 2020 across provinces. The provinces in the legend are ordered by the degree

of dispersion around the benchmark. Ontario and Quebec exhibit the lowest levels of

misallocation-related productivity loss in both years, although Quebec’s position deteriorates

noticeably between 2014 and 2020. In contrast, Alberta and British Columbia show some

improvement over the same period, whereas New Brunswick experiences a clear decline.

Manitoba and Saskatchewan, despite some improvement, remain among the provinces most

affected by misallocation. To ensure a clearer presentation of the distributions, I trim the

top and bottom 1% of observations to remove outliers. Therefore, these figures highlight the

relative positions of provinces in terms of efficiency and misallocation over time.

In general, the dispersion of TFPR relative to the benchmark can differ by as much as

20% from the sectoral average, suggesting that misallocation is a significant contributor to

productivity losses in Canada.
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4.2 Total Misallocation and Decomposition

I decompose aggregate total factor productivity (TFP) losses at the province-sector level

into two components: Within-sector across provinces and between-sector within provinces,

along with input-specific productivity loss measures from misallocation of capital, labor, and

energy separately.

Tables 1 and 2 report these results for the years 2014-2020, under two reference elasticities

of substitution between sectors, σ = 3 and σ = 7 respectively.

Table 1 reports the estimated potential gains in total factor productivity (TFP) by

eliminating input misallocation across provinces and sectors in Canada over the period

2014–2020 when σ = 3. The numbers are expressed as percentage deviations from the

efficient benchmark, that is, (1− A
A∗)× 100, where A denotes observed TFP and A* denotes

counterfactual TFP under efficient input allocation. These values measure the extent to

which distortions in capital, labor, and energy allocation lower aggregate productivity.

Table 1: Potential TFP Gains from Input Reallocation (in %), 2014–2020, σ = 3

Component 2014 2015 2016 2017 2018 2019 2020

Total Misallocation 8.05 6.46 4.90 4.84 5.28 5.74 5.08

Between-sector Misallocation 3.96 2.25 1.27 1.53 1.53 1.96 1.63
Capital 1.80 1.22 0.55 0.66 0.71 0.88 0.83
Labor 0.78 0.50 0.36 0.37 0.39 0.37 0.46
Energy 1.43 0.55 0.36 0.50 0.45 0.73 0.34

Within-sector Misallocation 4.26 4.31 3.67 3.37 3.81 3.86 3.50
Capital 1.33 1.27 1.75 1.36 1.71 1.85 1.33
Labor 2.55 2.76 1.26 1.54 1.69 1.54 1.73
Energy 1.53 1.67 1.14 0.93 1.09 0.98 0.81

Notes: Total potential TFP gains, (1 − Â) x 100, are decomposed into between-sector (within
provinces) and within-sector (across provinces) components. By construction, the sum of within-
and between-sector components equals the total potential gain with some rounding errors. Between-
sector misallocation is further decomposed by input (capital, labor, energy); these input-specific
contributions sum to the between-sector component with some rounding errors. Within-sector
input-specific contributions are derived from counterfactuals in which distortions in one input
are retained while distortions in the other two inputs are set to zero. Because of the non-linear
structure in the expression, these input-specific within-sector measures do not sum to the within-
sector component (see Appendix B.7, Equations B.82, B.83, B.84), it rather delivers the relative
contributions from each input under within-sector component. Results are based on a conservative
elasticity of substitution across provinces assumption, σ = 3, yielding lower-bound estimates of
potential gains.

Under a conservative elasticity of substitution between provinces, σ = 3, the total potential
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productivity gains from eliminating input misallocation range from 8% in 2014 to 5% in 2020.

This gradual decline suggests a modest but consistent improvement in allocative efficiency over

the period. The decomposition of these potential gains into within and between sectors reveals

a clear pattern: Most of the productivity loss is sourced from within-sector misallocation,

that is, inefficient allocation of inputs across provinces within the same sector. In 2014, for

example, within-sector misallocation accounted for 4.26% of the total 8.05% potential gain,

while between-sector misallocation contributed 3.96%. This relationship persists throughout

the sample period, highlighting the importance of interprovincial distortions within the same

sectors.

Breaking down the sources of between-sector misallocation by input type reveals that

capital is the largest contributor. In 2014, for example, capital misallocation alone accounted

for 1.80 percentage points of the between-sector productivity loss. Energy followed closely

with 1.43 percentage points, while labor accounted for 0.78 percentage points. These

patterns are broadly consistent over time: capital misallocation remains the primary factor,

contributing between 0.55 and 1.80 percentage points per year. However, despite making

up only around 8% of total input use, energy is consistently the second-largest source of

misallocation, with potential contributions ranging from 0.34 to 1.43 percentage points

annually. This disproportionate impact highlights the critical role of energy in shaping

allocative efficiency. In contrast, labor misallocation is relatively modest—typically below 0.5

percentage points—indicating a more efficient allocation of labor across sectors. The outsized

role of energy, despite its relatively small input share, highlights why energy misallocation

deserves more attention alongside capital in discussions of productivity and input use.

Within-sector misallocation presents a more complex picture, particularly in terms of

input-specific contributions. Notably, the sum of the input-specific within-sector misallocation

terms—capital, labor, and energy—does not equal the total within-sector misallocation. This

is by construction: each input-specific figure results from a separate counterfactual scenario in

which distortions in that particular input are retained, while distortions for other two inputs

are set to zero. Due to the non-linear, complementary nature of input use in production,

the total gains from removing all distortions simultaneously are not equal to the sum of

individual gains. However, we observe several patterns. Labor misallocation plays a prominent

role within sectors, especially in earlier years, indicating that labor mobility is limited due

to provincial differences. For instance, inefficiencies in labor allocation contributed 2.55

percentage points to within-sector (across provinces) misallocation in 2014 and 2.76 points in

2015. Capital also remains a persistent and important source of within-sector inefficiency,

particularly in later years in the sample—for example, accounting for 1.85 percentage points

in 2019. Energy misallocation within sectors is also sizeable, despite its low input share, with
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contributions of 1.53 percentage points in 2014 and 0.83 % in 2015. While the results suggest

that energy efficiency within sectors across provinces is improving, it remains a significant

source of productivity loss, highlighting the need for further research.

Table 2: Potential TFP Gains from Input Reallocation (in %), 2014–2020, σ = 7

Component 2014 2015 2016 2017 2018 2019 2020

Total Misallocation 9.40 7.51 5.81 5.72 6.85 6.52 5.81

Between-sector Misallocation 3.96 2.25 1.27 1.53 1.53 1.96 1.63
Capital 1.80 1.22 0.55 0.66 0.71 0.88 0.83
Labor 0.78 0.50 0.36 0.37 0.39 0.37 0.46
Energy 1.43 0.55 0.36 0.50 0.45 0.73 0.34

Within-sector Misallocation 5.66 5.39 4.60 4.26 5.40 4.65 4.25
Capital 5.12 3.30 4.89 4.29 7.28 4.41 3.51
Labor 5.85 5.51 3.35 4.21 5.49 3.75 3.82
Energy 3.27 3.36 2.36 2.23 3.37 2.07 1.85

Notes: Total potential TFP gains, (1 − Â) x 100, are decomposed into between-sector (within
provinces) and within-sector (across provinces) components. By construction, the sum of within-
and between-sector components equals the total potential gain with some rounding errors. Between-
sector misallocation is further decomposed by input (capital, labor, energy); these input-specific
contributions sum to the between-sector component with some rounding errors. Within-sector
input-specific contributions are derived from counterfactuals in which distortions in one input
are retained while distortions in the other two inputs are set to zero. Because of the non-linear
structure in the expression, these input-specific within-sector measures do not sum to the within-
sector component (see Appendix B.7, Equations B.82, B.83, B.84), it rather delivers the relative
contributions from each input under within-sector component. Results are based on a high elasticity
of substitution across provinces assumption, σ = 7, yielding upper-bound estimates of potential
gains.

To examine the range of potential productivity gains under a less conservative elasticity of

substitution, I repeat the analysis assuming σ = 7. Table 2 reports the results of this exercise,

indicating that potential aggregate productivity gains are higher, ranging from 5.81% in

2020 to 9.40% in 2014. This higher estimate arises because a larger σ allows for greater

substitutability of inputs across provinces, which amplifies the productivity gap between the

observed allocation and the efficient frontier. Under this higher elasticity, the within-sector

misallocation component reaches to the range of 4.25 to 5.66 percentage points per year. In

contrast, the between-sector component remains unchanged from the σ = 3 case. This is

consistent with the model’s structure, in which the between-sector term is independent of σ.

The increase in potential aggregate productivity gains is, therefore, sourced entirely from

larger distortions within sectors across provinces. I further break it down by input type to
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explore the role of each input; potential productivity gains from reallocating capital within

sectors reach 7.28 percentage points in 2018. Labor-related distortions also remain sizable,

accounting for 5.85 and 5.51 percentage points of within-sector misallocation in 2014 and

2015, respectively. While energy’s share in production is relatively small, its misallocation is

disproportionately large, with potential productivity gains peaking at 3.37 percentage points

in 2018. These patterns indicate that capital and energy misallocation persistently account

for a substantial share of the measured productivity gap when σ is higher.

The results indicate two key sources of aggregate productivity loss: (1) interprovincial

input distortions within sectors, and (2) misallocation of energy use despite its low share of

production as an input, highlighting the need to focus on energy as an important source of

aggregate productivity loss. Labor appears to be more efficiently allocated across sectors

within a province, whereas there is still significant room for improvement across provinces,

highlighting the significance of interprovincial distortions in the labor market as well. The

disproportionate role of energy in driving both within- and between-sector inefficiencies

suggests that policies aimed at improving pricing, coordination, and investment in energy

markets could generate sizable productivity gains.

4.3 Measurement Error

While I have highlighted the potential productivity gains implied by the model under the

assumption of a Cobb-Douglas production technology and a constant elasticity of substitution

across provinces, it is important to acknowledge a key limitation: the model framework in this

paper attributes all variation in TFPR to misallocation, without allowing for the possibility

of measurement error. The literature has long emphasized that such variation may, in fact,

reflect data noise rather than true misallocation Hsieh and Klenow (2009); Bils et al. (2021);

Gollin and Udry (2021).

A common approach to mitigate this concern is to trim outliers that may disproportionately

drive variation and productivity gaps. In line with this practice, I trim the top and bottom

1% of the TFPR distribution. More formally, following the logic of Bils et al. (2021), I

analyze the potential magnitude of measurement error by examining the relationship between

revenue and inputs, as suggested in Hsieh and Klenow (2009). Given that my data consist of

provincial input–output tables at the sectoral level—much more aggregated and complete

than firm-level data—measurement error is less likely to be a dominant issue. Importantly,

concerns about ownership structure, firm entry, and exit, which complicate firm-level analyses,

are irrelevant in this setting.

To quantify the extent of measurement error, I regress sectoral revenue on inputs, pooling
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Table 3: Regression of Revenue on Input, 2014–2020

Variable Coefficient Std. Error

Constant -0.0590 0.0031
log(inputs) 0.9694 0.0011

Observations 13594
R2 0.982

Notes: The table reports coefficients from regressing log revenue, ln(PsiYsi), directly on log inputs,
ln((rKsi)

αs(wLsi)
βs(pEEsi)

γs). All years are pooled for estimation. All variables are measured
relative to the sectoral mean, with sectors weighted by value-added shares. This suggests that
measurement error is responsible for up to 3 % of the estimated productivity gap in main results,
suggesting that measurement error is not driving the results. See Hsieh and Klenow (2009) for
more details.

all years in my sample. The results are reported in Table 3. In this specification, a coefficient

of 1 would indicate no measurement error, whereas deviations from 1 can be interpreted

as the percentage extent of error. The estimated coefficient deviates by no more than 3%,

suggesting that the productivity gaps identified in the main model are unlikely to be primarily

driven by measurement error.

I also extend this analysis by following a more rigorous approach of Bils et al. (2021),

who focus on growth rates rather than levels to detect measurement error. Specifically, I

regress revenue growth on input growth and examine the resulting coefficients across TFPR

deciles, as shown in Figure A.2. The results indicate that the lowest and highest deciles show

larger deviations from 1, suggesting that tails of the TFPR distribution may be affected

by measurement error. However, since I have already trimmed the top and bottom 1% of

observations, much of this concern is substantially addressed. In contrast, the coefficients for

the middle deciles are much closer to 1, indicating that measurement error is not a significant

driver of TFPR dispersion in the bulk of the distribution.

In summary, these robustness checks suggest that while measurement error may affect

the extremes of the distribution, the main findings of the paper regarding productivity gaps

and misallocation remain robust.

5 Conclusion

This paper quantifies the productivity loss in Canada resulting from the misallocation

of energy, labor, and capital across sectors and provinces. By extending the standard

misallocation framework to include energy as a distinct input and using detailed provincial

input–output data, I estimate the potential gains from reallocating inputs to their most
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productive uses at the province-by-sector level and decompose these gains into within-sector

(inter-provincial) and between-sector (inter-sectoral) components, with both terms further

broken down by input contributions relative to an efficient benchmark.

The results reveal significant inefficiencies. In the benchmark case, under conservative

assumption of interprovincial substitutability (σ = 3), efficient reallocation of inputs between

provinces and sectors could increase aggregate output by approximately 5- 8%. Within-

sector (interprovincial) misallocation—driven by regulatory fragmentation and limited energy

trade—accounts for roughly 3.4 to 4.3 percentage points of this loss, while between-sector

(intersectoral) misallocation contributes about 1.3 to 4.0 percentage points. In the between-

sector dimension, energy consistently emerges as the second-largest contributor—exceeding

labor in all years and, in some cases, approaching capital’s contribution—despite representing

only about 8% of input costs. In the within-sector dimension, the role of energy remains

substantial, accounting for 1.0 to 1.7 percentage points of total loss.

These results highlight two key points. First, energy plays a disproportionately large

role in shaping aggregate productivity, despite its relatively small share in production—a

characteristic that has often led to its omission in misallocation analyses. This highlights the

need to recognize energy as a critical driver of aggregate productivity loss, and to incorporate

it more systematically into future misallocation-related studies, while also integrating energy

policy more centrally into broader productivity and growth strategies. Second, interprovincial

fragmentation, including trade barriers and regulatory differences, remains a major obstacle to

efficient input allocation, suggesting that greater coordination between provincial regulations

and investment in interprovincial trade infrastructure could generate significant economic

gains.

In conclusion, the results underscore the importance of considering both spatial and

input-specific dimensions of misallocation when evaluating aggregate productivity. By ex-

plicitly incorporating energy as a distinct factor of production, this paper adds a critical

layer to the misallocation literature and demonstrates that even relatively small cost inputs

can generate sizable distortions when poorly allocated. The Canadian context—with its

provincial regulatory heterogeneity and limited internal trade—further illustrates how insti-

tutional frictions can amplify inefficiencies. While focused on Canada, the analysis offers

broader lessons for federal systems with fragmented energy regulation or limited interregional

energy trade, such as the United States, Australia, or European countries. These insights

provide a foundation for future research on province-sector-level misallocation and the role

of coordination in national productivity strategies. Addressing these inefficiencies is not

only essential for uncovering Canada’s growth potential, but also for aligning economic and

climate objectives in a coherent policy framework.
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Appendix

A Figures

Figure A.1: Changes in the variation of marginal returns to inputs by sector, 2014 vs.
2020.

Notes: Changes in the dispersion of marginal revenue products by input and sector between 2014

and 2020. Sectors are ranked by the magnitude of change, and the top 30 are shown. A decline in

variance indicates improved allocative efficiency, while an increase signals greater misallocation.

Labor shows minimal change, whereas capital and energy account for most of the observed variation,

with energy exhibiting the largest persistent dispersion.
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Figure A.2: Log Coefficients vs Log(TFPR) by Decile

Notes: The figure plots the regression coefficients estimated from regressing revenue growth,

∆ ln(PsiYsi), on input growth, ∆ ln((rKsi)
αs(wLsi)

βs(pEEsi)
γs), across deciles of log TFPR. All

years are pooled for estimation and plotting. All variables are measured relative to the sectoral

mean, with sectors weighted by value-added shares. While measurement error appears to be more

of a concern in the lowest and highest TFPR deciles, this is addressed in the main analysis by

trimming the top and bottom 1% of the distribution, reducing concerns about measurement error

by handling outliers in the data. See Bils et al. (2021) for further details.

B Mathematical Derivations

B.1 Derivation of Sectoral Expenditure Shares and the Aggregate

Price Index

Consider the single final good defined as a Cobb–Douglas composite of sectoral outputs:

Y =
S∏

s=1

Y θs
s ,

S∑
s=1

θs = 1, (B.1)

where θs ∈ (0, 1) are the fixed expenditure (or technology) weights associated with each sector

s. The corresponding expenditure minimization problem can be written as

min
{Ys}Ss=1

S∑
s=1

PsYs subject to Y =
S∏

s=1

Y θs
s , (B.2)
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where Ps denotes the sectoral price.

The first-order conditions of this problem imply that

PsYs

PY
= θs, (B.3)

so that the parameter θs coincides with the expenditure share of sector s in the total

output. Economically, this reflects the well-known property of Cobb–Douglas preferences

and technologies: a constant share of income is allocated to each component, independent of

prices or income levels.

Isolating and substituting Ys back into the aggregator yields the dual expression for the

aggregate price index.

P =
S∏

s=1

(
Ps

θs

)θs

, (B.4)

which is the exact price index associated with the Cobb–Douglas composite.

B.2 Province-Level Pricing and Revenue

Provinces solve:

max
Ysi

Ps

(∑
i

Y
σ−1
σ

si

) σ
σ−1

−
∑
i

PsiYsi. (B.5)

The First Order Condition is

Psi = PsY
1
σ
s Y

−1
σ

si , (B.6)

Multiplying both sides by Ysi to get an expression for province-level revenue yields:

PsiYsi = PsY
1
σ
s Y

σ−1
σ

si . (B.7)

This expression shows that the revenue of province i in sector s depends both on the output

of the sector, Ys, and on the province’s own output, Ysi. The CES structure implies that

demand reallocates toward provinces with relatively more competitive provinces (lower Psi),

with the elasticity σ governing the strength of this substitution. In equilibrium, summing

over provinces recovers total sectoral revenue PsYs, consistent with CES aggregation.

B.3 Derivation of the Sectoral Price Index

The sectoral price index Ps can be derived using the cost minimization problem. The

total output in sector s is given by a CES aggregator of individual variety outputs Ysi:
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Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

, (B.8)

where σ > 1 is the elasticity of substitution between varieties. This functional form captures

the idea that output combines provincial outputs with imperfect substitutability.

To derive Ps, consider a representative cost-minimizing province solving the problem:

min
Ysi

∑
i

PsiYsi subject to Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

. (B.9)

This ensures that the price index reflects the minimum expenditure required to obtain one

unit of Ys. The Lagrangian can be written as:

L =
∑
i

PsiYsi + λs

(
Y

σ−1
σ

s −
∑
i

Y
σ−1
σ

si

)
. (B.10)

The first-order condition with respect to Ysi is:

Psi − λs
σ − 1

σ
Y

− 1
σ

si = 0. (B.11)

Total costs are given by:

∑
i

PsiYsi =
∑
i

λs
σ − 1

σ
Y

− 1
σ

si Ysi = λs
σ − 1

σ

∑
i

Y
σ−1
σ

si = λs
σ − 1

σ
Y

σ−1
σ

s (B.12)

Rearranging yields the demand function:

Y
σ−1
σ

si =

(
λs

1

Psi

σ − 1

σ

)σ−1

. (B.13)

This shows that demand for a province’s output is decreasing in its own price, with the

elasticity governed by σ.

Substituting into the CES aggregator and solving for λs gives:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

=

(
λs

σ − 1

σ

)σ
(∑

i

(
1

Psi

)σ−1
) σ

σ−1

(B.14)

λs =
σ

σ − 1
Y

1
σ
s

(∑
i

(
1

Psi

)σ−1
) −1

σ−1

(B.15)

Plugging this back into the total cost expression yields:
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∑
i

PsiYsi = λs
σ − 1

σ
Y

σ−1
σ

s = Y
1
σ
s

(∑
i

(
1

Psi

)σ−1
) −1

σ−1

Y
σ−1
σ

s = Ys

(∑
i

P 1−σ
si

) 1
1−σ

(B.16)

Therefore, based on the following equation.

∑
i

PsiYsi = PsYs (B.17)

we conclude that

Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(B.18)

The CES price index Ps is therefore the standard aggregator of province-level prices, reflecting

how cheaper provinces receive larger expenditure shares, with σ governing the substitutability

across provinces.

B.4 Distortions in Input Markets

Suppose each input market is subject to a distortion τKsi
, τLsi

, τEsi
, so that firms face

distorted input prices. The firm’s profit maximization problem is:

max
Ksi,Lsi,Esi

PsY
1
σ
s Y

σ−1
σ

si − (1 + τKsi
)rKsi − (1 + τLsi

)wLsi − (1 + τEsi
)pEEsi. (B.19)

To make this explicit, a Cobb–Douglas production function at the province-sector level is

assumed: Ysi = AsiK
αs
si L

βs

siE
γs
si , where αs + βs + γs = 1.

max
Ksi,Lsi,Esi

PsY
1
σ
s

(
AsiK

αs
si L

βs

siE
γs
si

)σ−1
σ − (1 + τKsi

)rKsi − (1 + τLsi
)wLsi − (1 + τEsi

)pEEsi.

(B.20)

Then the first-order conditions (FOCs) for optimal input choices are:

MRPKsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si αs
Ysi

Ksi

= (1 + τKsi
)r, (B.21)

MRPLsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si βs
Ysi

Lsi

= (1 + τLsi
)w, (B.22)

MRPEsi = PsY
1
σ
s
(σ − 1)

σ
Y

− 1
σ

si γs
Ysi

Esi

= (1 + τEsi
)pE. (B.23)
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Intuitively, distortions act as wedges between the value of the marginal product of an input

and the common price of that input. Using the fact that PsiYsi = PsY
1
σ
s Y

σ−1
σ

si , marginal

revenue products can be rewritten as:

MRPKsi = αs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Ksi

= αs
(σ − 1)

σ

PsiYsi

Ksi

= (1 + τKsi
)r, (B.24)

MRPLsi = βs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Lsi

= βs
(σ − 1)

σ

PsiYsi

Lsi

= (1 + τLsi
)w, (B.25)

MRPEsi = γs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Esi

= γs
(σ − 1)

σ

PsiYsi

Esi

= (1 + τEsi
)pE. (B.26)

Next, I define productivity measures. Physical productivity is:

TFPQsi = Asi =
Ysi

Kαs
si L

βs

siE
γs
si

(B.27)

while revenue productivity incorporates prices:

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

βs

siE
γs
si

(B.28)

Thus, TFPRsi reflects how distortions affect the revenue side of productivity. However,

differences in physical productivity, TFPQsi, is natural and does not imply any misallocation.

Finally, taking the geometric mean of the marginal revenue products (with sector-level input

shares) gives:

(MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs

= (α
(σ − 1)

σ

PsiYsi

Ksi

)αs(β
(σ − 1)

σ

PsiYsi

Lsi

)βs(γ
(σ − 1)

σ

PsiYsi

Esi

)γs

= ((1 + τKsi
)r)αs((1 + τLsi

)w)βs((1 + τEsi
)pE)

γs

= αs
αsβs

βsγs
γs
(σ − 1)

σ

PsiYsi

Kαs
si L

βs

siE
γs
si

= αs
αsβs

βsγs
γs
(σ − 1)

σ
TFPRsi

(B.29)

Hence,

TFPRsi ∝ (MRPKsi)
αs(MRPLsi)

βs(MRPEsi)
γs

∝ (1 + τKsi
)αs(1 + τLsi

)βs(1 + τEsi
)γs

(B.30)
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This formulation shows that TFPRsi is proportional to the geometric mean of marginal

revenue products and, equivalently, of input distortions. Under an efficient allocation with

zero distortions, all provinces within a sector would face the same TFPRsi; therefore, any

observed variation directly reflects misallocation.

B.5 Sector-Level Productivity

Having incorporated province-level distortions, we next construct sector-level productivity

measures by comparing each province’s observed marginal revenue products (MRPs) to

sector-level weighted averages across provinces.

Starting with capital, the sector-level weighted average MRP in sector s is:

MRPKs =

∑
i KsiMRPKsi∑

i Ksi

=

∑
i αs

σ−1
σ
PsiYsi∑

i αs
σ−1
σ

PsiYsi

r(1+τKsi
)

=

∑
i PsiYsi∑

i
PsiYsi

r(1+τKsi
)

(B.31)

Here, each province’s MRP is weighted by its capital usage, capturing the aggregate contri-

bution of capital in the sector.

Given sectoral revenue PsYs =
∑

i PsiYsi, this simplifies to:

MRPKs =
r∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(B.32)

Intuitively, MRPKs reflects both the factor price r and the distribution of distortions across

provinces.

Comparing the province-level MRPKsi to the sector-level weighted average (MRPKs):

MRPKs

MRPKsi

=

r∑
i

1
(1+τKsi

)

PsiYsi
PsYs

r(1 + τKsi
)

=
1

(1 + τKsi
)
∑

i
1

(1+τKsi
)
PsiYsi

PsYs

(B.33)

and similarly for labor and energy:

MRPLs

MRPLsi

=
1

(1 + τLsi
)
∑

i
1

(1+τLsi
)
PsiYsi

PsYs

(B.34)

MRPEs

MRPEsi

=
1

(1 + τEsi
)
∑

i
1

(1+τEsi
)
PsiYsi

PsYs

(B.35)

Notice that in the absence of distortions (τ = 0), these ratios are equal to 1, consistent with

efficient allocation.

Given that we have explicit formulas for distortions and marginal revenue products
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compared to sector-weighted averages we can move forward to calculate the output implications

of these. Taking the geometric mean across all factors K, L, and E:

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ

=

(∑
iKsiMRPKsi

MRPKsi

∑
i Ksi

)α(∑
i LsiMRPLsi

MRPLsi

∑
i Lsi

)β (∑
i EsiMRPEsi

MRPEsi

∑
i Esi

)γ

(B.36)

Given
∑

iKsiMRPKsi =
∑

i LsiMRPLsi =
∑

i EsiMRPEsi ∝ PsYs =
∑

i PsiYsi, and∑
i Ksi = Ks,

∑
i Lsi = Ls,

∑
iEsi = Es, this geometric mean is proportional to TFPRsi =

PsiAsi.

Notice that,

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ

=
PsYs

PsiAsiKαs
s Lβs

s Eγs
s

=
PsAs

PsiAsi

(B.37)

Finally, we recover sector-level TFP, As by using the sector level price index derived earlier:

We have

Ps =

(∑
i

P 1−σ
si

) 1
1−σ

(B.38)

To isolate As we can multiply the expression by Asi and take the power of (σ − 1) and some

over provinces.

∑
i

(
�
�AsiPsAs

Psi�
�Asi

)σ−1

= P (σ−1)
s A(σ−1)

s

∑
i

P
(1−σ)
si︸ ︷︷ ︸

P 1−σ
s

= Aσ−1
s (B.39)

If we take the power of 1/(σ − 1) we arrive at TFPs = As by applying the same operations

to the left-hand side of B.37 we get an expression for As

As =

∑
i

(
Asi

(
MRPKs

MRPKsi

)α(
MRPLs

MRPLsi

)β (
MRPEs

MRPEsi

)γ
)σ−1

 1
σ−1

. (B.40)

Finally, we need an expression for Asi to bring this model into data. Recall that province-sector

level revenues are given by:
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PsiYsi = Ps(Ys)
1
σY

σ−1
σ

si (B.41)

At the province level, this implies:

Ysi = (Ps(Ys)
1
σ )

−σ
1−σ (PsiYsi)

σ
σ−1 (B.42)

Given that Ysi = AsiK
αs
si L

βs

siE
γs
si we can write:

Asi =
(PsYs)

−1
σ−1

Ps

(PsiYsi)
σ

σ−1

Kαs
si L

βs

siE
γs
si

(B.43)

So,

Asi ∝
(PsiYsi)

σ
σ−1

Kαs
si L

βs

siE
γs
si

(B.44)

which provides the empirical link between observed revenue, inputs, and productivity. In-

tuitively, sector-level TFP aggregates province-level outputs while adjusting for both input

allocation and distortions, capturing the efficiency of the sector as a whole.

B.6 Measuring Input-Specific Distortions

To measure input-specific distortions, I begin by expressing the marginal revenue product

of input under perfect competition and a Cobb–Douglas production technology assumptions.

Recall that

MRPKsi = αs
(σ − 1)

σ

PsY
1
σ
s Y

− 1
σ

si

Ksi

= αs
(σ − 1)

σ

PsiYsi

Ksi

= (1 + τKsi
)r (B.45)

Taking logarithms and subtracting ln(r) yields

ln(MRPKsi)− ln(r) = ln(αs
(σ − 1)

σ
) + ln(

PsiYsi

Ksi

)− ln(r) = ln(1 + τKsi
) (B.46)

or equivalently,

ln(MRPKsi)− ln(r) = ln(αs
(σ − 1)

σ
) + ln(

PsiYsi

rKsi

) = ln(1 + τKsi
) (B.47)
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This can be rearranged as

ln(MRPKsi)︸ ︷︷ ︸
ϵsi

− ln(r)− ln(
σ − 1

σ
)︸ ︷︷ ︸

β0

− ln(αs)︸ ︷︷ ︸∑
s βsγs

= ln(
PsiYsi

rKsi

) (B.48)

This expression motivates the following regression to recover the dispersion of marginal

revenue products.

ln(
PsiYsi

rKsi

) = β0 +
∑
s

βsγs + ϵsi (B.49)

The interpretation of the regression is intuitive. The dependent variable measures the ratio of

revenue to capital expenditure. The intercept term captures common parameters, including

the rent of capital and the elasticity of substitution. Sector-fixed effects absorb sector-level

averages, while the error term reflects deviations from these averages. These residuals

represent the unexplained variation and therefore provide information on the distribution of

marginal revenue products. Formally, this implies V ar(ln(MRPKsi)) = V ar(ln(ϵ̂si)). This

expression provides an estimate of the extent of misallocation. In the absence of distortions,

marginal revenue products would be equalized within each sector (across provinces), implying

a variance approaching zero. A larger residual variance, therefore, signals greater misallocation

and larger potential productivity gains from reallocation.

The same procedure can be extended to labor and energy to obtain measures of misallo-

cation across all major inputs.

B.7 Productivity Decomposition

I start by defining sector-level total factor productivity (TFP) As using a Cobb-Douglas

production function, where output Ys is produced with capital Ks, labor Ls, and energy Es:

As =
Ys

Kαs
s Lβs

s Eγs
s

(B.50)

Sectoral output Ys aggregates province-level outputs Ysi through a constant elasticity of

substitution (CES) aggregator with elasticity σ:

Ys =

(∑
i

Y
σ−1
σ

si

) σ
σ−1

(B.51)

This captures substitutability: more productive provinces contribute more to sector output.

Substituting province-level production functions Ysi = AsiK
αs
si L

βs

siE
γs
si into the CES aggre-

gator, we express sectoral TFP, As, as:
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⇒ As =

(∑
i

(
AsiK

αs
si L

βs

siE
γs
si

)σ−1
σ

) σ
σ−1

Kαs
s Lβs

s Eγs
s

(B.52)

or more compactly,

=

∑
i

(
Asi

(
Ksi

Ks

)αs
(
Lsi

Ls

)βs
(
Esi

Es

)γs
)σ−1

σ


σ

σ−1

(B.53)

This expresses sector TFP as a function of province-level productivity and allocation. Note

that this expression is just normalizing province-level inputs by the sector total, for which we

know explicitly what they are. We can explicitly write input shares and we can define the

revenue shares to get a more compact expression. Let revenue and input shares be:

Rsi =
PsiYsi

PsYs

, ksi =
Ksi

Ks

, lsi =
Lsi

Ls

, esi =
Esi

Es

(B.54)

By plugging in the terms in the marginal revenue products and a bit of algebra we arrive at

an expression below. The expression shows that the capital share ksi allocated to province i

in sector s is proportional to its revenue Rsi, adjusted by the distortion (1+ τKsi
). Intuitively,

provinces with larger revenues attract more capital, while higher distortions reduce their

share. This captures how capital is distributed across provinces based on their revenue

generating potential.

ksi =
Ksi

Ks

=
Ksi∑
i Ksi

=

αs

r
σ−1
σ

PsiYsi

(1+τKsi
)∑

i
αs

r
σ−1
σ

PsiYsi

(1+τKsi
)

=
Rsi/(1 + τKsi

)∑
i Rsi/(1 + τKsi

)
(B.55)

⇒ As =

[∑
i

(
Asik

αs
si l

βs

si e
γs
si

)σ−1
σ

] σ
σ−1

(B.56)

It is straightforward to see that the fully efficient allocation yields an efficient sector-level

benchmark TFP, A∗
s, expressed as:

A∗
s =

[∑
i

Aσ−1
si

] 1
σ−1

(B.57)

The ratio of observed sector level productivity term to efficient benchmark productivity term,
As

A∗
s
, isolates productivity losses from misallocation within sector s:
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As

A∗
s

=

[∑
i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1

(B.58)

I will use B.58 to derive the national level productivity loss. At the national level, I can

express national TFP, A, as:

A =
Y

K ᾱLβ̄E δ̄
=

∏
s Y

θs
s

K ᾱLβ̄E δ̄
, ᾱ =

∑
s

αsθs (B.59)

⇒ A =
∏
s

(
AsK

αs
s Lβs

s Eγs
s

KαsLβsEγs

)θs

(B.60)

⇒ A =
∏
s

Aθs
s

(
Ks

K

)αsθs (Ls

L

)βsθs (Es

E

)γsθs

(B.61)

⇒ A =
∏
s

(
As

(
Ks

K

)αs
(
Ls

L

)βs
(
Es

E

)γs
)θs

(B.62)

Following the same logic as for sector-level input shares, I calculate national-level input

shares by aggregating across both sectors and provinces. This allows me to obtain the total

national input and directly compare it with sector-level inputs as follows.

K =
∑
s

Ks =
∑
s

∑
i

Ksi (B.63)

ks =
Ks

K
=

∑
iKsi∑

s

∑
iKsi

, =

∑
i
αs

r

(
σ−1
σ

)
PsiYsi

1+τKsi∑
s

∑
i
αs

r

(
σ−1
σ

)
PsiYsi

1+τKsi

=

∑
i αs

PsiYsi

1+τKsi∑
s

∑
i αs

PsiYsi

1+τKsi

(B.64)

=
αs

∑
i

PsiYsi

1+τKsi∑
s αs

∑
i

PsiYsi

1+τKsi

=
αsPsYs

∑
i

Rsi

1+τKsi∑
s αsPsYs

∑
i

Rsi

1+τKsi

(B.65)

where Rsi = PsiYsi/PsYs. Then the observed level of capital, ks, can be expressed as:

ks =
Ks

K
=

αsPsYs

∑
i Rsi/(1 + τKsi

)∑
s αsPsYs

∑
i Rsi/(1 + τKsi

)
=

αsPsYs

∑
iRsi/(1 + τKsi

)∑
s αsPsYs

∑
iRsi/(1 + τKsi

)
(B.66)
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Define the harmonic mean of sector-level distortions as follows:

1 + τKs =
1∑

i
Rsi

1+τKsi

(harmonic mean) (B.67)

The harmonic mean appears naturally here because capital allocation depends on the inverse

of the distortion. Intuitively, sectors with higher revenues Rsi and lower distortions (1 + τKsi
)

weigh more heavily in determining the effective sector-level distortion. Using the harmonic

mean ensures that provinces with high distortions contribute less, while those with low

distortions and large revenues contribute the aggregate measure more. With θs = PsYs/PY

denoting the sector’s revenue share, we can then express the sector-level distortion in a

compact form.

ks =
Ks

K
=

αsθs/(1 + τKs)∑
s αsθs/(1 + τKs)

(B.68)

Also, as there are no distortions in optimal allocation we can simply write

k∗
s =

K∗
s

K∗ =
αsθs∑
s αsθs

(B.69)

Comparison of the observed, ks, to efficient, k∗
s , level of input gives us:

⇒ ks
k∗
s

=

(
1

1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

(B.70)

Similar algebra for labor and energy yields,

⇒ ls
l∗s

=

(
1

1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

(B.71)

⇒ es
e∗s

=

(
1

1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

(B.72)

Finally, the ratio of the observed national TFP, A, to the efficient level of national TFP, A∗,

gives us the productivity loss due to misallocation:

A

A∗ =
∏
s

((
As

A∗
s

)(
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

(B.73)
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A

A∗ =
∏
s

(
As

A∗
s

)θs

︸ ︷︷ ︸
Within-sector misallocation

×
∏
s

((
ks
k∗
s

)αs
(
ls
l∗s

)βs
(
es
e∗s

)γs
)θs

︸ ︷︷ ︸
Between-sector misallocation

(B.74)

A

A∗ =
∏
s

(
As

A∗
s

)θs

×
∏
s


(
ks
k∗
s

)αs

︸ ︷︷ ︸
Capital

misallocation

·
(
ls
l∗s

)βs

︸ ︷︷ ︸
Labor

misallocation

·
(
es
e∗s

)γs

︸ ︷︷ ︸
Energy

misallocation


θs

(B.75)

We can write the within,
(

A
A∗

)
within

, portion of the expression explicitly by plugging B.58:

∏
s


[∑

i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Rsi/(1+τLsi
)∑

i Rsi/(1+τLsi
)

)βs
(

Rsi/(1+τEsi
)∑

i Rsi/(1+τEsi
)

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(B.76)

To understand each input’s role in within sector productivity loss we can use the efficient

benchmark for each input and can conclude each input’s contribution to within term. To do

so, we use the standard result from perfect competition case under Cobb-Douglas production

technology.

Psi =
As

Asi

(B.77)

by rearranging B.41 we can get

Ysi = Ys

(
Psi

Ps

)−σ

(B.78)

Plugging Psi term in gives us:

Ysi = Ys

(
As

Ps

)−σ

Aσ
si (B.79)

Finally, we can express the revenue shares Rsi =
PsiYsi

PsYs
in terms of Asi by plugging Psi and

Ysi terms into the numerator.

Rsi =
PsiYsi

PsYs

=

(
As

Asi

)(
Ys

(
As

Ps

)−σ

Aσ
si

)
PsYs

(B.80)
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It implies that Rsi ∝ Aσ−1
si So, the efficient benchmark for revenue shares R∗

si can be expressed

as:

R∗
si =

Rsi∑
j Rsj

=
Aσ−1

si∑
j A

σ−1
sj

(B.81)

Given this relationshio between revenue shars and productivity terms, we can write each

input’s relative contribution in the within term by assuming the other two inputs allocated

efficiently. Therefore, following expressions can be written for
(

A
A∗

)
withinK

,
(

A
A∗

)
withinL

, and(
A
A∗

)
withinE

respectively.

∏
s



∑
i

(
Asi

(
Rsi/(1+τKsi

)∑
i Rsi/(1+τKsi

)

)αs
(

Aσ−1
si∑

j A
σ−1
sj

)βs
(

Aσ−1
si∑

j A
σ−1
sj

)γs
)σ−1

σ


σ

σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(B.82)

∏
s


[∑

i

(
Asi

(
Aσ−1

si∑
j A

σ−1
sj

)αs (
Rsi/(1+τLsi

)∑
i Rsi/(1+τLsi

)

)βs
(

Aσ−1
si∑

j A
σ−1
sj

)γs)σ−1
σ

] σ
σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(B.83)

∏
s



∑
i

(
Asi

(
Aσ−1

si∑
j A

σ−1
sj

)αs
(

Aσ−1
si∑

j A
σ−1
sj

)βs (
Rsi/(1+τEsi

)∑
i Rsi/(1+τEsi

)

)γs)σ−1
σ


σ

σ−1

[∑
i A

σ−1
si

] 1
σ−1



θs

(B.84)

As for the between term, we can write the between,
(

A
A∗

)
between

portion explicitly as:

∏
s



(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αs
(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs
(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γs


θs

(B.85)

To further decompose the between term to find each input misallocation contribution we can
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write the following expressions.

(
A

A∗

)
betweenK

=
∏
s


(

1
1+τKs

)
·
∑

s αsθs∑
s

αsθs
1+τKs

αsθs

(B.86)

(
A

A∗

)
betweenL

=
∏
s



(

1
1+τLs

)
·
∑

s βsθs∑
s

βsθs
1+τLs

βs


θs

(B.87)

(
A

A∗

)
betweenE

=
∏
s


(

1
1+τEs

)
·
∑

s γsθs∑
s

γsθs
1+τEs

γsθs

(B.88)

Therefore,

A

A∗ =

(
A

A∗

)
within

×
(

A

A∗

)
between

=

(
A

A∗

)
within

×
(

A

A∗

)
betweenK

×
(

A

A∗

)
betweenL

×
(

A

A∗

)
betweenE

(B.89)

or more compactly,

Â = Âwithin × Âbetween = Âwithin × ÂbetweenK × ÂbetweenL × ÂbetweenE (B.90)
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